

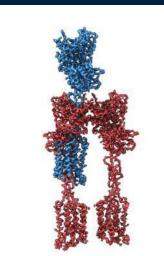
EMPOT: PARTIAL ALIGNMENT OF DENSITY MAPS AND RIGID BODY FITTING USING UNBALANCED GROMOV-WASSERSTEIN DIVERGENCE

Aryan Tajmir Riahi¹, Chenwei Zhang^{1,3}, James Chen³, Anne Condon¹, Khanh Dao Duc^{1,2,*}

¹ Department of Computer Science, ² Department of Mathematics, University of British Columbia, ³ Amgen * kdd@math.ubc.ca

Abstract

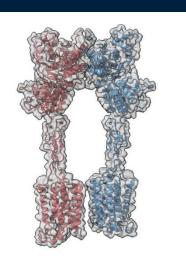
- Aligning density maps and fitting atomic models are key in cryo-EM.
- This remains challenging when one map partially fits the other
- Our new method: EMPOT (EM Partial alignment with Optimal Transport).

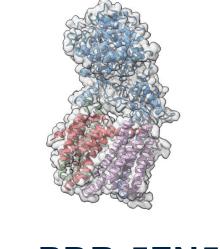


Misalignment of two maps using ChimeraX standard function

Datasets

We test EMPOT on two atomic cryo-EM structures.
Subunits in blue were used for partial alignment with the global maps.





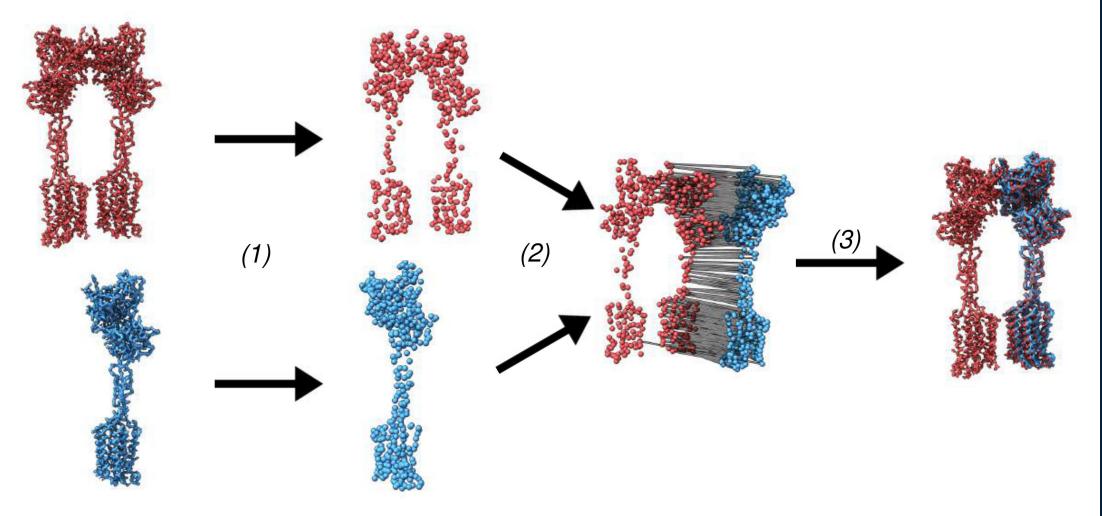
PDB:6N52

PDB:5FN5

Alignment Procedure

EMPOT three main steps:

- (1) Converting density maps to point clouds
- (2) Finding an optimal mapping between point clouds
- (3) Calculating the associated rotation + translation



Main features:

- Fast (~1 min)
- Invariant from initial positions
- Can handle partial maps
 - Can be applied to fit atomic models

Methods

(1) We use the Topology representing network algorithm (TRN) ¹
3D voxelized maps (A; B) $A = \{a_1, ..., a_n\}, B = \{b_1, ..., b_m\}$

We define intrinsic cost functions for *A* and *B*

 $C_{i,j}^a = d(a_i, a_j)^2$, $C_{i,j}^b = d(b_i, b_j)^2$, where d is the Euclidean distance.

(2) We find an optimal mapping $P \in \mathbb{R}^{n \times m}_{>0}$, by minimizing

$$\sum_{i,j=1}^{n} \sum_{k,l=1}^{m} \left| \left| C_{i,j}^{a} - C_{k,l}^{b} \right| \right|^{2} P_{i,k} P_{j,l} + \rho \left[KL^{q}(\pi_{1},n) + KL^{q}(\pi_{2},m) \right],$$

that defines the Unbalanced Gromov-Wasserstein divergence²

- $\rho > 0$: unbalanced parameter,
- π_1 , π_2 : marginal distribution constraints

$$\pi_{1,j} = \sum_{i} P_{j,i}$$
, $\pi_{2,j} = \sum_{i} P_{i,j}$

• KL^q: quadratic Kullback-Leibler divergence

$$KL^{q}(\pi_{1}, n) = \sum_{i,j} \log(n^{2} \pi_{1,i} \pi_{1,j}) \pi_{1,i} \pi_{1,j} - \sum_{i,j} \pi_{1,i} \pi_{1,j}$$

We match point clouds as $\pi(a_i) = b_{\arg\max_i P_{i,i}}$.

(3) Rigid body transform (rotation + translation) associated with π

 R_{opt} , $T_{opt} = \operatorname{argmin}_{R,T} \sum_{i=1}^{n} \left| |Ra_i + T - \pi(a_i)| \right|^2$, is calculated using the Kabsch³ algorithm.

Results (1) Partial Alignment

PDB:6N52 (50 repeated experiments)

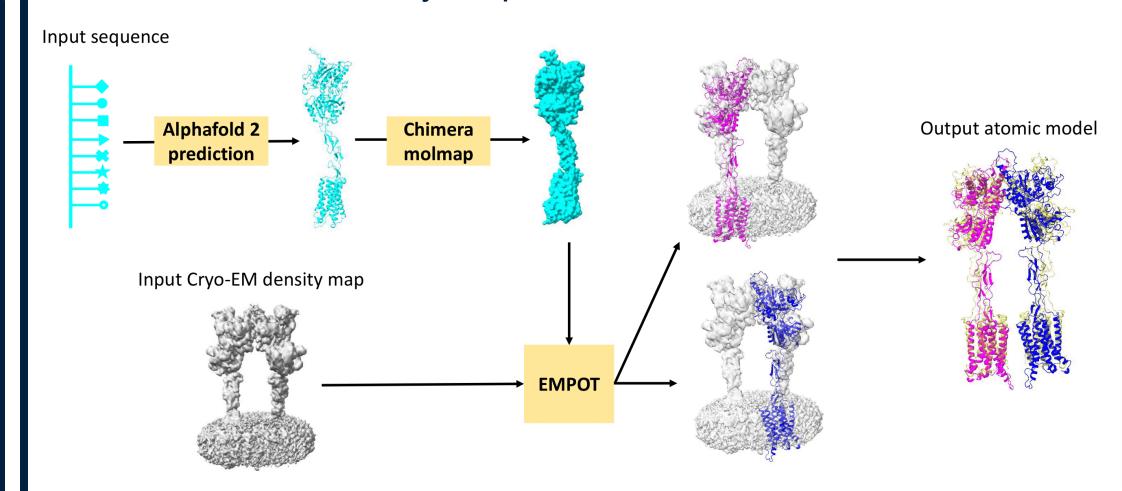
Metric	EMPOT	AlignOT ⁴	BOTalign ⁵	EMAlign ⁶	ChimeraX ⁷
Angle difference	4. 22 ± 5. 74	20.15 ± 17.63	10.16 ± 1.16	42.61 ± 65.43	99.15 ± 49.60
RMSD	5.20 ± 7.54	255.41 ± 6.99	252.00 ± 4.99	128.32 ± 130.88	311.38 ± 150.42

PDB:5FN5 (50 repeated experiments)

Metric	EMPOT	EMAlign ⁶	ChimeraX ⁷
Angle difference	4.08 ± 0.003	132.34 ± 47.61	102.31 ± 60.05
RMSD	1.97 ± 0.002	276.96 ± 116.43	260.79 ± 157.19

Results (2) Model Building

Model building procedure: We generate structures from the input sequence using *Alphafold* and run EMPOT to fit the structure with a density map



Performance in reconstructing a subunit of PDB:6N52

Metric	EMPOT	phenix.doc k_in_map	gmfit	DEMO-EM
TM-score	0.722	0.701	0.670	0.551

Conclusion & Future Work

- Our new method outperforms standard methods for partial alignment of EM maps
- More experiments needed (more datasets, test different resolutions, weights, point cloud methods...)
- Refine the method for model building

References

- [1] Martinetz T, Schulten K. Topology representing networks. *Neural Networks*, 1994;7(3):507–522.
- [2] Séjourné T, Vialard FX, Peyré G. The unbalanced gromov wasserstein distance: Conic formulation and relaxation. *Advances in Neural Information Processing Systems*, 2021;34:8766–8779.
- [3] Kabsch W. A solution for the best rotation to relate two sets of vectors. *Acta Crystallographica Section A:* Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976;32(5):922–923.
- [4] Riahi, A. T., Woollard, G., Poitevin, F., Condon, A., & Duc, K. D. (2023). AlignOT: An optimal transport based algorithm for fast 3D alignment with applications to cryogenic electron microscopy density maps. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*.
- [5] Singer A, Yang R. Alignment of Density Maps in Wasserstein Distance, arXiv preprint arXiv:230512310. 2023;.
- [6] Harpaz Y, Shkolnisky Y. Three-dimensional alignment of density maps in cryo-electron microscopy, *Biological Imaging*, 3:e8, 2023.
- [7] Pettersen EF, et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. *Protein Science*, 2021;30(1):70–82.
- [8] Jumper J, et al. Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.