
Results (1) Improvement of Map Correlation

Motivations
• Intermediate-resolution cryo-EM maps (4–8 Å) are common but 

challenging for accurate protein structure modeling due to low contrast 
and structural ambiguity.

• Existing enhancement methods are not optimized for this resolution 
range and use only density information, ignoring valuable structural 
context.

• Protein Language Models (pLLMs) like ESM-IF11 offer rich structural 
embeddings but remain underutilized in map enhancement.

• There's a need for fast, accurate, and structure-aware approaches to 
facilitate map interpretability for downstream applications like protein 
structure modeling.

• To address these challenges, we developed CryoSAMU — the first 
multimodal network that integrates protein structural embeddings into 
a 3D voxel-based U-Net using cross-attention2, enabling enhanced cryo-
EM maps optimized for intermediate resolution.

Dataset
• Dataset includes 384 pairs of cryo-EM density maps and protein 

structures from EMDB3 and PDB4.
• Excluded maps with misaligned PDB structures or non-protein 

macromolecules.
• Filtered pairs with correlation score below 0.65 to ensure 

complete mappings.
• Retained unique PDB structures with sequence identity over 30%.

Methods

Self-Attention Weighting for Structural Embeddings
• Handles proteins with variable chains and residues
• Use soft attention to preserve informative structures
• Produce fixed-size structural embeddings for multimodal learning

Procedure:
1. Output from ESM-IF1 for all chains and residues:
 𝐸 ∈ ℝ𝐶×𝑅×𝑑 (𝐶:  𝑛𝑜. 𝑐ℎ𝑎𝑖𝑛𝑠, 𝑅:  𝑛𝑜. 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠, 𝑑:  𝑒𝑚𝑏 𝑠𝑖𝑧𝑒) 

2. Aggregate residue embeddings into chain-level embeddings:
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3. Compute pairwise chain similarity and Softmax attention weights:
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4. Get chain importance and perform weighted aggregation:
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5. Repeat the above steps to 𝐸𝑝𝑜𝑜𝑙𝑒𝑑
 for residue-level attention to obtain 

a scalar weight 𝛼𝑗  for each residue j = 1,2, … , 𝑅.

6. Normalize and resample 𝐸𝑝𝑜𝑜𝑙𝑒𝑑
 w.r.t 𝛼𝑗  to select top-L informative 

residues:
𝐸𝑓𝑖𝑛𝑎𝑙 ∈ ℝ𝐿×𝑑

• CryoSAMU-enhanced maps exhibit better alignment with corresponding 
protein structures, revealing more structural details, outlined by black 
boxes in Figure (d).
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• CryoSAMU outperforms deposited maps in both real-space and 
Fourier-space correlation

• CryoSAMU shows competitive performance compared to SOTAs, such 
as EMReady5.

Results (2) Improvement of Protein Modeling

• CryoSAMU achieves the best residue coverage score, while the sequence 
match score is slightly lower than EMReady5 and DeepEMHancer6.

• Integrating structural embeddings enhances the continuity and 
interpretability of generated maps, improving protein structure prediction. 

Results (3) Improvement of Inference Speed
• CryoSAMU 

achieves an 
average 
processing time 
of 32.49 seconds, 
approximately 
13.6 times faster 
than EMReady.

• Promising tool 
for large-scale 
and practical 
applications.

The CryoSAMU Framework
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Visualization of Enhanced Maps
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