
Molecular programmers use elementary step simulators [1], e.g., 

Multistrand [2,3], to predict DNA reaction rates from secondary structure 

folding trajectories. Simulators should be fast!

Assumptions:

• Pseudoknot free structures; O(1) branches per loop

• Move rate computable in O(1) time from :

i. free energy change, plus 

ii. local context of base pair formed (consistent with Metropolis, 

Kawasaki, Arrhenius kinetic models) 

• Free energy of “large” loops can be computed in O(1) time from 

i. Local contexts around closing base pairs and 

ii. Number of unpaired bases

Solution: By partitioning moves into types, with moves of the same type 

having the same rate, we reduce the worst-case time for state updates to 

O(N), keeping move generation at O(log N). Θ(N2) pre-computation time is 

also required.

Methodology Analysis
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Motivation 

Contribution 

Problem: State updates of current simulators [2,3,4] are slow in the worst 

case: Θ(N2) time, where N is the total number of bases in the input strands. 

Can we do better?

rate(bk,bk’)  = r(L,t)  
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sample base pair to form or break from applicable (e.g., 

pseudoknot free) moves

State update: compute rates for possible next moves
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Multistrand trajectory generation:

Data structure for loop L, move type t stores:

• r(L,t): all moves in L of type t have the same rate

• O(1) time (see assumptions above)

• M(L,t): number of moves in L of type t:

• O(1) time from pre-computed table:

• M(L,t) = Mc [j] - Mc [i], where [i,j] is the viable subregion of u’

In loop L , move type t is specified as  (c, d, u, u’) where

• c is local context of base pair (b,b’) formed

• d = b’ – b (where b < b’) is sequence-level distance

• u and u’ identify the unpaired region(s) in L that contain b and b’

Distance d constrains b' to be within a 

unique (possibly empty) viable subregion 

[i,j] of u’, where [i-d,j-d] is a subregion of u
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Similar to refs [2,3,4]

New: move types
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rate(b1,b1’)  = r(L,t)
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Move generation O(log N) time via generative tree model: 

• Edge labels represent cumulative rates 

• Binary search on a pre-computed table at the leaves

State update O(log N) time to update balanced tree of loops. O(N) time to 

create balanced tree of  move types for new loops
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