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Motivation & contributions Case StUdy: Helix association reaction P4+T4 from Gao et al. [6] Case StUdy: Helix association reaction 39 from Hata et al. [8]
+ Existing visualization tools for DNA kinetics are often restricted to a class g e Y S0 A o 11 POCR S (TORE SRR . Simulated using Murtstrand (frst stop mode, parameters by Lowrod ot o 91
of reactions, limited in their resolution of individual secondary structures, |
and unable to capture unexpected patterns. 10 0 o NI, Free energy (kcal/mol) 000 mOO0H OMO  EOMH H SMH SMO SOH W S00 Strucétturakl type
* QOur framework ViDa creates low-dimensional embeddings of secondary D Initial state A - < Secondary structure I Miic-:stack
structure state spaces using the output of kinetics simulators, e.g., B Final state L S g | ' - Hairpin
Muiltistrand [1].

 ViDa's state embeddings are smoother (with less “jumpy” trajectory Trajectory
embeddings) than GSAE [2], PHATE [3], PCA, and MDS, and can
provide insight into: .
. individual trajectories, and
.  overall reaction mechanisms.
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Kinetics of (multiple) DNA strands:

Seq: 3'-ACACGATCATGTCTGCGTGACTAGA-5'#3' =TCTAGTCACGCAGACATGATCGTGT-5"

* Strands stochastically (un-)bind and (un-)fold from initial towards final Hairpin: 3"=. ((((........%. )))) e e e -5'+3"-. . ... (CCCe e e )))).-5' Seq:3' —CCATCAGGAATGAEA&?QAgAM—S ' $3' ~TTTGTGTGTGTCATTCCTGATGG-5'
secondary structures. Hybridization rate: k = 2.0 + 0.1 x 105 M 151 Hybridization rate: k = 14.7 + 0.4 x 10> M~1s~1
* Usually modelled by a continuous time Markov chain (CTMC) * Branches of the state space reflect different reaction pathways.  Embeddings distinguish many different reaction mechanisms.
Reaction trajectory: . . L . . . . . . . L
« Two major energy basins with different hairpins: * High probability of forming stable mis-stacks or hairpins (direct zipping is rare)
* The sequence of states (secondary structures), from the reactants to the i - ctrand ot it vsis in [7 Misstack ot | oM e iatic t
broducts of a single instance of a DNA reaction, along with the time to airpins on each strand (consistent with analysis in [7]) Is-stacking state space regions (OM*) can behave as kinetic traps.
transition from one state to the next « 3-stem hairpins on each strand (new finding)  From OM*, there is an “escape route” via SM* (rather than via 000).
Deep graph embeddings: 3-stem hairpins on each strand
+
» Nodes/edges of a graph are mapped onto a vector space [2]. .A(g(i((-.i(é%b..ll)(zél./.m.c.).l.((( """ D=2
 The mapping is defined by a neural network trained to capture structural “tep o
and semantic relationships in the graph. ’f; 5
PHATE: Non-linear dimensionality reduction approach [3] e Clusters

Model architecture
4-stem hairpins on each strand
Secondary structures are embedded into a real vector space by the scatter (0. 20 M- (((C+ID)-(((C.......... N)).

transform [4] and passed into a variational autoencoder (VAE) [5]. The VAE AG R e ! *

loss is augmented with three domain-specific regression terms: first I Gt haioins on one strand
passage time, graph edit distance, and free energy. The dimensionality of ... (@& EmMMM<MMHHX(emm
the samples is then reduced with PCA/PHATE for visualization. AG = -21.347 kcal/mol

Dominant pathway (slow): hairpin & mis-stack formation before zipping
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* Well-preserved global metric structure: high-to-low energy trend
* Well-preserved local metric structure: similar neighbors

* Encoder and decoder: 2 FC layers with RELU & batch norm _ d
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z; = learned embedding of state i | distance D, « ? 1] Schaeffer, J.M., Ph.D. thesis, Caltech, 2013.
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Reaction simulator > Adjacency matrix > Scatter J = ~J’ | lLaten 1 4] Gao, F. et al. ICML, pp. 2122-2131, 2019
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d; ; = min{estimated first passage times i — j,j — i} Gao Y., et al. Nucleic Acids Res., 34 (11): 3370-77, 2006.
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